Page tree

Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.


Page properties

Short Description

The intent of this track is to engage the FHIR community on the implementation of the FAIR (Findability, Accessibility, Interoperability, and Reuse) principles and FAIR health data objects by using HL7 FHIR. This objective will be pursuit by leveraging on existing HL7 FHIR implementation experiences.

Long Description

There is a growing interest, above all in the research communities, on FAIR data. The aspirational nature of principles however led to a wide range of interpretations of FAIRness. The FAIR principles by itself in fact do not strictly define how to achieve a state of FAIRness. 

To facilitate the implementation and  the assessment of FAIR health data by using HL7 FHIR, a new HL7 project (called FAIRness for FHIR) is going to be started: the first objective of this project is the development of a new FHIR IG (FHIR4FAIR) to support social and health data FAIRness.

This first edition of the FAIR track aims to engage the FHIR community on the implementation of the FAIR principles and the assessment of the FAIR indicators, by collecting and discussing implementation experiences, known challenges, and proposed solutions,.... This also by testing and supporting the refinement of existing project specific FHIR IGs as the EU funded FAIR4Health project.

The outcomes of this track will be used as first input for the development of the FHIR4FAIR FHIR IG.


Premilinary scheduling:

  • Tuesday, December 8, 4:00 PM ET (10:00 PM CET): Connectathon 26 Track Overview Session for Participants
  • Wednesday, December 9 – Friday, December 18: Track Orientation Sessions
  • Tuesday, December 15, 4:00 PM ET (10:00 PM CET): Connectathon Information Session: Connectathon Prep
  • Thursday, December 17, 11:00 AM ET (17:00 PM CET):  Track Orientation Session

  • Wednesday, January 13. tm : Introduction to the FAIR track 
  • Wednesday, January 13 - Friday, January 15, 2021: Connectathon


Educate on the use of a FHIR technology/IG (Test a FHIR-associated specification)

Submitting Work Group/Project/Accelerator/Affiliate/Implementer Group  

FAIRness for FHIR HL7 project (SOA WG) / FAIR4Health (EU funded project)

Proposed Track Lead

Alicia Martínez-García,

Giorgio Cangioli,

Related Tracks

FHIR Version


Specification(s) this track uses

Artifacts of focus

Clinical input requested (if any)


Patient input requested (if any)


Expected participants

Expected participants:

  • Scientific community
    • FAIR researchers
      • FAIR projects
      • FAIR-connected organizations (e.g. EOSC; RDA;..)
    • Data science researchers
    • Software engineering researchers
    • University community
  • Health providers
    • Health data owners
    • Health policy makers
    • Health data stewards
    • Health data curators
  • Developers and/or integrators
  • EHR-S vendors
  • Pharma organizations

We expect to have at least 5-10 participants.

Zulip stream



Track Orientation Date

between December 9 and December 18

December  17th  11:00 ET // 17:00 CET

Track Orientation Details


Track Details

As described in the introduction, this first edition of the FAIR track aims to engage the HL7 FHIR community on the implementation of the FAIR principles and the assessment of the FAIR indicators, by collecting and discussing implementation experiences, known challenges, proposed solutions, etc.

Type of systems (system roles) that could participate in this track:

  1. Data source system:  system from raw data is provided, and FAIR data are obtained / generated
  2. Data analysis, curator and validator system: FHIR-based system allowing the selection of data, analysis, the authoring of metadata, the validation of FAIR data. 
  3. Data de-identification & anonymization system: FHIR-based system responsible for applying the requested procedure of de-identification & anonymization of  data before their publication.
  4. Data semantic modeling system: FHIR-based system covering semantic modeling and terminology mappings.
  5. Metadata system: FHIR-based system to aggregate metadata such as provenance information, interoperable and linked details, licences, versions, indexes, and/or other local metadata.
  6. FAIR data registry/repository system: FHIR-based system supporting the consultation and the retrieval of FAIR data, in conformance with their conditions of use. 
  7. FAIR data consumer system: system consulting and retrieving FAIR data, in conformance with their conditions of use.

The following described scenarios participating systems can engage in during the connectathon, are provided for exemplification purposes; also others, realized by existing implementations, can be evaluated and discussed.

Technical scenarios:

  1. An agreed raw dataset are collected from data source systems and made available for analysis, curation, validation, semantic modeling, and/or metadata aggregation.
  2. Curated, validated, with appropriate metadata (including the condition of use), and semantic model data, are de-identified & anonymized as needed.
  3. Processed FAIR data are published in a FHIR-based FAIR repository.
  4. FAIR data are queried and retrieved by authorized consumers, in accordance with their conditions of use.

Functional scenarios:

  • (example) FAIR4Health use case #1: Characterization of multi-morbidity patterns and association with health outcomes in the elderly.
  • (example) FAIR4Health use case #2: Early prediction service for 30-days readmission risk in COPD patients.
  • (example) Sharing of COVID-19 patients dataset.

Security and Privacy Considerations:

   No security requirements to participate.