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Abstract. Multidisciplinary and highly dynamic pHealth ecosystems according to 

the 5P Medicine paradigm require careful consideration of systems integration and 

interoperability within the domains knowledge space. The paper addresses the 

different aspects or levels of knowledge representation (KR) and management (KM) 

from cognitive theories (theories of knowledge) and modeling processes through 

notation up to processing, tooling and implementation. Thereby, it discusses 

language and grammar challenges and constraints, but also development process 

aspects and solutions, so demonstrating the limitation of data level considerations. 

Finally, it presents the ISO 23903 Interoperability and Integration Reference 

Architecture to solve the addressed problems and to correctly deploy existing 

standards and work products at any representational level including data models as 

well as data model integration and interoperability. 
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Introduction 

For improving safety and quality of care as well as efficiency and efficacy of care 

processes under the current demographic, social, and economical constraints, healthcare 

systems undergo organizational and methodological paradigm changes. The first 

paradigm change describes the transition from organization-centric through disease-

specific process controlled to person-centric care, and the latter that from the 

phenomenological perspective of general care through dedicated care for patient groups 

with specific clinically relevant conditions towards personalized, participative, 

preventive, predictive precision medicine (5P Medicine). Systems and services following 

the 5P Medicine paradigm will be in the course of the paper called pHealth systems and 

pHealth services. Appropriate pHealth services provided to the subject of care are 

defined by its individual health status, conditions and expectations, as well as genetic 

and genomic dispositions in their personal social, behavioral, environmental, and 
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occupational context. Table 1 summarizes objectives and characteristics of pHealth and 

methodologies and technologies for meeting them [1]. 

 

Table 1. pHealth objectives, characteristics and methodologies/technologies to meet objectives, after [2] 

Objective Characteristics Methodologies/Technologies 

Provision of health services 

everywhere anytime 
 Openness 

 Distribution 

 Mobility 

 Pervasiveness 

 Ubiquity 

 Wearable and implantable 

sensors and actuators 

 Pervasive sensor, actuator and 

network connectivity 

 Embedded intelligence 

 Context awareness 

Individualization of the system 

according to status, context, 

needs, expectations, wishes, 

environments, etc., of the 

subject of care 

 Flexibility 

 Scalability 

 Cognition 

 Affect and Behavior 

 Autonomy 

 Adaptability 

 Self-organization 

 Subject of care 

involvement 

 Subject of care centration 

 Personal and environmental 

data integration and analytics 

 Service integration 

 Context awareness 

 Knowledge integration 

 Process and decision 

intelligence 

 Presentation layer for all 

actors 

Integration of different actors 

from different disciplines/do-

mains (incl. the participation/ 

empowerment of the subject of 

care), using their own 

languages, methodologies, 

terminologies, ontologies, 

thereby meeting any behavioral 

aspects, rules and regulations 

 Architectural framework 

 End-user interoperability 

 Management and 

harmonization of multiple 

domains including policy 

domains 

 

 Terminology and ontology 

management and 

harmonization 

 Knowledge harmonization 

 Language transformation/ 

translation 

 

Usability and acceptability of 

pHealth solutions 
 Preparedness of the 

individual subject of care 

Security, privacy and trust 

framework 

 Consumerization 

 Subject of care 

empowerment 

 Subject of care as manager 

 Information based 

assessment and selection 

of services, service quality 

and safety as well as 

trustworthiness 

 Lifestyle improvement and 

Ambient Assisted Living 

(AAL) services 

 Tool-based ontology 

management 

 Individual terminologies 

 Individual ontologies 

 Tool-based enhancement of 

individual knowledge and 

skills 

 Human Centered Design of 

solutions 

 User Experience Evaluation 

 Trust calculation services 

 

More details can be found in the papers published in the pHealth conferences series 

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], in other proceedings [13, 14, 15, 16, 17] and in specific 

journal publications or books such as [1, 18, 19, 20]. The pHealth service delivery is 

inseparably bound to the ongoing technological and methodological paradigm changes 

such as mobile, micro-, nano-, bio- and molecular technologies, big data and business 

analytics, artificial intelligence and autonomous systems including robotics, etc., but also 

new computing technologies such as cloud, cognitive and edge computing. Table 2 

presents a more complete list of technologies, methodologies and principles for 

transforming healthcare ecosystems to pHealth. The described organizational, 



methodological and technological paradigm changes affect granularity, complexity and 

maturity of health systems as well as the maturity levels of the underlying processes, 

resulting in the transition from empiric through evidence-based to translational medicine, 

or in other words as transition from an observational (subjective) through an analytical 

(objective) to an integrated pHealth approach. 

 

Table 2. Technologies, Methodologies and Principles for Transforming Healthcare Ecosystems 

• Mobile technologies, biotechnologies, nano- 

and molecular technologies 

• Big data and business analytics 

• Integration of analytics and apps 

• Assisting technologies  Robotics, 

autonomous systems 

• Natural Language Processing  Text 

analytics  Intelligent media analytics 

• Knowledge management (KM) and 

knowledge representation (KR)  Artificial 

intelligence (AI)  Artificial common 

(general) intelligence  Intelligent 

autonomous systems 

• Security and privacy, governance, ethical 

challenges, Education  Asilomar AI 

Principles 

• Cloud computing, cognitive computing, social 

business 

• Edge computing as a "family of technologies 

that distributes data and services where they 

best optimize outcomes in a growing set of 

connected assets“ (Forrester Research),  

• Virtual reality and augmented reality, thereby 

blurring “the boundaries between the physical 

and digital worlds“ (Gartner). 

• Creation of IoT-Platforms and app-ecosystems 

• Patient-generated health data ecosystem  

multiple, dynamic policies 

• Web content management  Digital experience 

management 

• Data bases  NoSQL technologies  Data 

warehouses  Graph DBs  Data lakes 

• EHR includes genomic data 

• Specifications  Implementation  Tooling 

 Testing  Certification 

1. Methods 

The 5P Medicine approach as introduced above requires advanced communication and 

cooperation between different disciplines and their actors (persons, organizations, 

devices, applications, components), thereby bridging between their different 

perspectives and contexts, the related different methodologies, terminologies and 

ontologies, but also their different levels of maturity, knowledge, experiences, skills, etc. 

The paper addresses requirements and solutions for knowledge-based interoperability 

necessary for multidisciplinary complex and dynamic pHealth ecosystems and 

demonstrates the limitations of data sharing and health information exchange (HIE) 

paradigms. For that purpose, it considers knowledge representation (KR) and knowledge 

management (KM) from different perspectives such as theory of knowledge, cognitive 

sciences and philosophy, abstraction and expressivity of languages and scope-specific 

grammars, enterprise architectures, modeling good practices, data modeling, system 

development processes, etc., thereby discussing opportunities and limitations of 

approaches. It provides solutions for overcoming the gap between the current practice of 

static models and the need for dynamic, flexible, non-deterministic and adaptive models 

representing the pHealth paradigms. An advanced and comprehensive solution, the 

interoperability and integration reference architecture model and framework, developed 

by the first author and standardized at ISO/TC215, is introduced and discussed in some 

detail. 



2. Foundations of Knowledge Representation 

There are multiple definitions of knowledge. Alter defines knowledge as “a combination 

of instincts, ideas, rules, and procedures that guide actions and decisions” [21]. The 

Merriam-Webster Online Dictionary defines knowledge as “the sum of what is known: 

the body of truth, information, and principles acquired by mankind” [22]. According to 

Davenport, knowledge is "information combined with experience, context, 

interpretation, and reflection. It is a high-value form of information that is ready to apply 

to decisions and actions" [23]. Other definitions focus more on the human mind’s aspect. 

The different knowledge classes such as classification-based knowledge, decision-

oriented knowledge, descriptive knowledge, procedural knowledge, reasoning 

knowledge, or assimilative knowledge should not be detailed here.  

The representation of reality following the theory of knowledge or cognitive theory 

requires the move from cognition/sense-perception to conceptualization [24]. According 

to Doerner, domain knowledge consists of reproducible and reliable models of a domain, 

i.e. models which can be justified and repeatable formulated in the domain of discourse 

(discipline) [25]. Knowledge of a discourse domain, representing that domain’s 

perspective on reality to facilitate reasoning, inferring, or drawing conclusions, must be 

created, represented, and maintained by domain experts using their methodologies, 

terminologies and ontologies.  

Since the late 1990ies, ontologies have been a key strategy in encoding, using and 

sharing knowledge in computer sciences [26]. Following Guarino, an ontology, can be 

seen as the study of the organization and the nature of the world independent of the form 

of our knowledge about it [27]. From the modeling perspective, three levels of 

knowledge representation are distinguished and must be consecutively processed: a) 

epistemological level (domain-specific modeling), b) notation level (formalization, 

concept representation), c) processing level (computational, implementations) [25]. A 

model is thereby defined as a representation of objects, properties, relations and 

interactions of a domain, enabling rational and active business in the represented domain. 

The generalization of domain-specific epistemological models requires their 

transformation into a universal KR notation. The outcome must be validated on the real 

world system and thereafter adopted if needed (Figure 1) [25].  

 

 
Figure 1. Knowledge representation development process (after [25]). 



Deploying KR techniques such as frames, rules, tagging, and semantic networks, a 

good KR has to manage both declarative and procedural knowledge. 

Another concept in the cognitive theory is intelligence, which is established by four 

fundamental principles: data, information, knowledge, and wisdom (frequently 

summarized as intelligence). The basis of intelligence is data, i.e. measures and symbols 

of the world gathered through observation and investigations. Collected by various 

sensors and organs, data are represented as external signals, facts, quantities, etc., 

forming the structural part of intelligence. At the next level, data are interpreted 

producing information as the second principle of intelligence. Attaching meaning to data 

represents the semantic level of intelligence, enabling decision-making. At the third 

level, knowledge allows the subjective, purpose- and context-specific interpretation of 

information to derive actions. Wisdom provides awareness, insight, moral judgments, 

and principles to validate/improve existing as well as to create new knowledge. 

Knowledge modeling combines data or information into a reusable format for the 

purpose of preserving, improving, sharing, aggregating and processing knowledge to 

simulate intelligence [28]. 

3. Knowledge Representation Principles and Practices 

KR is first of all a substitute or surrogate for a real thing to allow reasoning about the 

world rather than taking action in it. For a deeper understanding of knowledge 

representation, it is useful to look at how knowledge is composed and what the relevant 

properties of knowledge and its components are. Floridi provides a definition that is 

closely linked to his theory of both information and data. Hence, is of particular interest 

to the knowledge representation and knowledge management communities. In Floridi’s 

theory, knowledge is the meaningful associate of factual semantic information. The latter 

is defined as follows: “p qualifies as factual semantic information if and only if p is 

(constituted by) well-formed, meaningful, and veridical data.” It is important to note that 

Floridi’s notion of well-formed data is not restricted to refer to syntactically well-formed 

data in the sense of grammar, which would point to a more digital interpretation of what 

he means by data. He specifically states that he refers to anything that determines the 

form, construction, composition, or structuring of something, be it a machine, a movie, 

a painting, or a garden. He uses the term syntax, which is what determines whether 

something is well-formed in an extremely broad sense. In addition, his definition refers 

to the meaningfulness of the data. Meaningful data is also called semantic content. 

Semantic content can be either instructional (describing actions to be taken, typically to 

achieve a certain aim) or factual (describe the state of affairs in the world). Floridi’s 

definition entails a number of aspects relevant to our investigation: a) Factual semantic 

information (and thus knowledge) is not restricted to statements or sentences. Pictures, 

diagrams, etc. may also be part of knowledge. Hence, the use of “veridical” over “true”. 

b) False information is, indeed not information, and hence not part of knowledge. [29] 

Similarly, Schulz distinguished between ontological knowledge (axioms that are 

universally true), symbolic knowledge (statements about properties and meaning of signs 

of language), factual knowledge (statements about concrete entities and their 

relationships) as well as contingent knowledge (probabilistic and default statements, 

uncertainty) [30]. 

To enable reasoning about the world, KR provides a set of signs to represent the 

objects, phenomena and processes of interest. The assigning of the relationship between 



sign and entity that is pointed to by the sign is charging the signs with meaning. This is 

typically done using the methodologies of model theory and in the process ontological 

commitments are formed and expressed. KR provides a theory of reasoning, composed 

of (a) the representation’s fundamental conception of intelligent reasoning, (b) the set of 

inferences the representation sanctions (the proof theory), and (c) the set of inferences it 

recommends. Furthermore, KR supports pragmatically efficient computation by properly 

organizing information to facilitate making the recommended inferences. Finally, KR is 

a medium for human expression by defining the language to represent the world. For 

realizing those functions and objectives, KR deploys knowledge representation 

technologies such as rules, logic, frames, semantic nets, etc. [31]. 

Nonaka and Takeuchi have analyzed the dynamics of knowledge creation, 

particularly the importance of tacit knowledge and its conversion into explicit knowledge. 

Externalization is a process of converting tacit knowledge into explicit concepts through 

the use of abstractions, metaphors, analogies, or models [32]. 

4. The Language Challenge of Knowledge Representation 

This section summarizes insights provided in different papers such as [16, 33, 34]. 

According to [35], an ontology is a content specification of a particular domain, where 

the domain can be of any kind. Thus, an ontology can be described as “an explicit 

specification of a conceptualization” [36] or as “a shared explicit formal specification of 

domains of knowledge” [37]. According to Gruber [38], an ontology provides a formal 

explicit specification of a shared conceptualization of a domain of interest. It describes 

an ordering system of entities of a domain with their concepts, functions, and relations. 

A concept is a knowledge component the expert community has agreed on. A concept 

must be uniquely identifiable, and independently accepted by experts and users. It has a 

representation and can be specialized and generalized. Thereby, knowledge can be 

represented at different levels of abstraction and expressivity, ranging from implicit 

knowledge (tacit knowledge) up to fully explicit knowledge representation, i.e. from 

natural language up to universal logic. Expressivity is the key factor when selecting an 

appropriate KR. A more expressive knowledge representation language enables an easier 

and more compact expression of knowledge within the KR semantics and grammar. 

However, there is a trade-off between expressivity and practicality [39]. Expressive 

languages probably require more complex logic and algorithms to construct equivalent 

inferences. This leads to a complexity problem of formal language and reasoning systems 

with the lack of computability, at the same time losing the consistency of the language 

system. In summary, highly expressive KRs are less likely to be complete or decidable, 

while less expressive KRs may be complete or decidable. Therefore, natural languages 

are not only efficient in representing meaning, shared knowledge, skills, and experiences 

assumed. They also provide an optimum between restriction to special structure and 

generative power enabling the rich and nevertheless decidable representation of real-

world concepts, supported of course by common sense knowledge. This is one of the 

reasons for representing facts and knowledge about a system and its domain-specific 

subsystems, their architecture and behavior by deploying natural-language-based 

domain-specific terminologies and concepts using domain-specific ontologies, 

extensively exploited in good modeling best practices. Context-free grammars, originally 

used to define the structure of syntax for programming languages, cannot express static 

semantics. One way to overcome these limitations is the deployment of context-sensitive 



grammars, by Chomsky proposed for describing NL, thereby embedding constraints and 

contexts in their rules. Alternatively, other grammatical models have been introduced to 

enhance the expressive power of programming languages. Syntax and static semantics 

of a small typed programming language has been defined by a grammar with contexts, 

however facing the complexity and consistency problem [40]. In summary: The 

difference between formal and natural languages – or between logic and natural language 

– is semantics, but even more pragmatics. There is a sound relation between logic and 

NL if logic is understood in a minimalist sense: providing a semantics for logical words, 

which needs to be enriched by pragmatic processes [41]. For more information on KR 

and KM see, e.g., [5, 16, 33]. 

When implicit knowledge contained in ontologies is made available and new 

knowledge is derived, the use of first-order-logic-based languages leads to the problem 

of non-determinability or semi-determinability. Languages are determinable if their 

characteristic function can be fully or at least partly calculated. Therefore, for knowledge 

management, determinable, sufficiently expressive first-order-logic subsets are used: the 

description logics. They provide well-defined formal semantics without variables in the 

formalism of predicates. Concepts, roles and individuals, as existent in the real world, 

can be described independently of each other [37]. 

Humans’ communication is further enriched by means such as semantics enhanced 

by gestures, mimics, social or psychological signals. To reduce the gap between human 

and technical communication especially in the demanding healthcare domain, 

multimodal interfaces have been tested [42, 43]. Landgrebe and Smith have also 

highlighted the limitations of machine communication vs. human dialog and human 

language [44]. 

The Chomsky Hierarchy as important contribution to the formal language theory 

(FLT) describes a set of classes or types of grammars with different levels of constraints 

for production rules resulting in different levels of complexity of the related languages 

[45]. The level of constraints applied to grammars, and so the level of complexity of the 

language built, decreases from Type 0 (unrestricted grammar / computably enumerable 

languages) through Type 1 (context-sensitive grammar / context-sensitive language) and 

Type 2 (context-sensitive grammar / context-free language) up to Type 3 (regular 

grammar / regular language), so forming a subset of the prevailing lower-typed grammar 

and lower-typed language. Meanwhile, the Chomsky Hierarchy has been refined into 

additional sub-classes through extending the class of context-free languages and regular 

language by mildly context-sensitive language and sub-regular language subclasses [46].  

Because of their simpler syntactical and semantical properties, programming 

languages follow a higher-typed grammar than natural languages. However, the terms 

“context-sensitive” and “context-free” used here should not be mixed up with the non-

FLT terms used in the description of systems, use cases and scenarios. 

5. Good Modeling Practices 

The representation of the system covering the subject of care and the processes of 

analyzing and managing his or her health must consider all levels of its structural 

granularity and related behavioral aspects [1]. Structurally, we have to consider the 

continuum from elementary particles to population, functionally deploying the 

methodologies of the multiple disciplines providing perspectives on pHealth ecosystems. 



A model is a simplified reflection of reality. It conceptually represents empirical 

objects, phenomena and processes in a logical and objective way. Typically, a model 

deals just with some aspects of reality. Therefore, Alter defined a model as partial 

representation of reality restricted to attributes the modeler is interested in according to 

the purpose of modeling, the addressed audience, etc. [21]. Similarly, Langhorst et al. 

[47] introduced a model as an unambiguous, abstract conception of some parts or aspects 

of the real world corresponding to the modeling goals. Consequently, two models of the 

same phenomenon may be essentially different due to differing requirements of the 

model's end users as well as behavioral, conceptual or contextual differences (e.g. 

knowledge, experiences, skills, etc.) among the modelers and to contingent decisions 

made during the modeling process [48]. For overcoming related problems when 

integrating different KR models, good modeling design principles such as orthogonality, 

generality, parsimony, and propriety [34] must be met. This requires that the relevant 

stakeholders shall define the provided view of the model, including the way of 

structuring and naming the concepts of the problem space. After capturing key concepts 

and key relations at a high level of abstraction, further abstraction levels will be used 

iteratively. However, the first iteration must be performed in a top-down manner to 

guarantee the conceptual integrity of the model [47]. The demonstrated good modeling 

practices hold for every new use case or new context to be represented including new 

aggregation of models. 

6. Data Modeling 

A data model is a visual representation of the people, places and things of interest to a 

business. It is used to facilitate communication between business people and technical 

people. A data model is composed of symbols that represent the concepts that must be 

communicated and agreed upon [49]. 

There are different levels of data models [49, 50]. On top, called the Very High 

Level Data Model, is the External Information Level or viewpoint. It describes the reality 

from a particular perspective for a particular purpose. It addresses business experts / users. 

At the next level, called the High Level Data Model, the Conceptual Information Level 

determines the relevant information and defines the basic concepts and their relationships, 

i.e. the business logic. That way, the business requirements can be collected and 

presented, and the basic concepts can be understood. The High Level Data Model 

addresses business users as well as problem analysts. The Logical Data Model (Logical 

Information Level) represents the platform-independent models, addressing business 

analysts and architects/designers. The Physical Data Model (Physical Information Level) 

represents the platform-specific models, addressing architects, database administrators 

and developers. Another approach for interrelating the different model levels uses the 

dimension of modeling from the 1-dimensional data modeling through information 

modeling, knowledge modeling up to the four-dimensional knowledge space 

representation [51], allowing for transformation between the different representation 

levels. The knowledge dimension covers the knowledge of one domain. The knowledge 

space dimension represents multiple domains’ concepts and their relations, so enabling 

their mapping. The higher the dimension, the more the modeling process is dominated 

by business domain experts. Sirpur proposes a three level data modeling architecture, 

consisting of a conceptual model, a logical data model, and a physical database model 

[52]. A similar approach is proposed by CIMI Corporation [53] with the three data 



modeling phases conceptual model, logical model, and physical model, however 

integrating in the conceptual model things like organizations, people, facilities, products 

and application services, that way presenting somehow a Very High Level Data Model. 

However, this is done inconsistently by mixing domain ontologies with ICT ontology at 

one model level.  

7. Business Modeling and Enterprise Architecture 

Most of the early business modeling and enterprise architecture specifications have been 

developed by companies and industry consortia. Also, formal Standards Developing 

Organizations developed data modeling architectures. Many of them follow the 

conceptual model of architectural description defined in IEEE 1471:2000 [54], which 

has further evolved to the conceptual model of an architectural description according to 

ISO/IEC/IEEE 42010:2011 [55] (Figure 2).  

 

 
Figure 2. Conceptual model of architectural descriptions [13], changed after [55]) 

 

IEEE 1471-2000 [54] and its generalization to ISO/IEC 42010:2011 [55] define an 

architecture as “the fundamental organization of a system embodied in its components, 

their relationships to each other, and to the environment, and the principle guiding its 

design and evolution.” According to those standards, a stakeholder is an individual, team, 

or organization (or classes thereof) with interests in, or concerns relative to, a system. 

Following this definition, an advanced approach to intelligent, knowledge-based 

ecosystems has been developed and currently standardized at ISO/TC215 as ISO 23903 

Health Informatics – Interoperability and Integration Reference Architecture [56]. 

Another architectural approach to represent development processes of systems and 

solutions for open distributed processing is ISO/IEC 10746 [57]. It defines the 

representation of different views from the enterprise perspective describing the (IT) 

system in question (enterprise view), its platform-independent informational 

representation (information view) and computational aggregation (computational view), 
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followed by the platform-specific engineering view (implementation) and technology 

view (deployment). The different views are represented through different languages with 

different grammars depending on the intended level of complexity and semantics to 

properly consider context, implicit knowledge, etc. Table 3 provides examples of 

representation tools (languages and grammars) to intendedly represent the different 

views. 

 

Table 3. Representation tools for the different ISO 10746 viewpoints 

Viewpoint Language/Grammar 

Business View Business Process Modeling Language (BPML) 

Information View Unified Modeling Language (UML),  

Object Constraint Language (OCL) Computational View 

Engineering View Programming languages with different levels of 

grammar Technology View 

 

An overview of alternative architectural models and frameworks such as the 

Zachman Framework for Enterprise Architecture [58], Reference Architectures for 

Service-Oriented Architecture (SOA) specified by The Open Group [59] or IBM [60], 

The Open Group Architecture Framework (TOGAF) [61], and many others is provided 

and in details discussed in [7].  

8. A Reference Architecture Model and Framework for Representing pHealth 

Ecosystems 

Translational medicine requires the advancement of communication and cooperation 

from data level (data sharing) to concept/knowledge level (knowledge sharing). This 

chapter shortly introduces the ISO 23903 Interoperability and Integration Reference 

Architecture model and framework for advanced interoperability in pHealth ecosystems. 

ISO 23903 is a system-oriented, architecture-centric, ontology-based, policy-driven 

approach including development processes following ISO 42010 and ISO 10746. 

Thereby, it extends the latter and details OMG’s Model Driven Architecture (MDA) 

Computation Independent Modeling [62]. The approach enables cross-domain concept/ 

knowledge sharing, mapping as well as integration of, and interoperability between, 

independently developed specifications and related products by transferring proprietary 

into standardized concept representations without requiring any revisions of those 

artifacts (Figure 3). The approach shows similarities with communication standards such 

as HL7, EDIFACT, ebXML, etc., enabling data sharing between independently 

developed applications with proprietary data format by transferring them into a 

standardized EDI format, however on the highest interoperability level (knowledge-

based and skills based) presented in Table 4.  

 



 
Figure 3. Interoperability and Integration Mediated by the ISO Interoperability and Integration Reference 

Architecture Model [56] 

 

Table 4. Interoperability Levels [56] 

Information Perspective Organization Perspective 

Interoperability 

Level 

Instances Interoperability Level 

Technical Technical plug&play, signal & 

protocol compatibility 

Light-weight interactions 

Structural Simple EDI, envelopes Data sharing 

Syntactic Messages and clinical documents 

with agreed vocabulary 

Information sharing 

Semantic Advanced messaging with common 

information models and 

terminologies 

Knowledge sharing at IT concept level 

in computer-parsable form 

 Coordination 

Organization/ 

Service 

Common business process Knowledge sharing at business concept 

level 

 Agreed service function level 

cooperation 

Knowledge 

based 

Multi-domain processes Knowledge sharing at domain level 

 Cross-domain cooperation 

Skills based Individual engagement in multiple 

domains 

Knowledge sharing in individual context 

 Moderated end-user collaboration 

 

All systems, work products or artifacts, developed independently under different 

perspectives and contexts (e.g. standards, components, FHIR resources, etc.), have to be 

formally represented according to ISO 23903 to interrelate them with each other for 

integration or interoperability. For that purpose, business systems must be modelled in a 

granularity or complexity appropriate for the considered use case. Thereby, each domain 

contributing to the business system in the context of the specific use case is represented 



at four generic levels of specialization/generalization. The components and intra-domain 

relations are instantiated using the corresponding domain ontologies. For facilitating the 

semantic integration of domain ontologies by harmonizing the representations and 

enabling the necessary concept mapping, top-level ontologies such as ISO/IEC 21838 

Information Technology – Top-level Ontologies [63] are deployed. Top level ontologies 

provide at a very abstract level general concepts that are common to all domains, that 

way supporting the re-engineering of existing or the development of new ontologies. For 

properly representing semantics and pragmatics, appropriate grammars or logics have to 

be used. The outcome is the conceptualization of the real world business system and use 

case in question as the ISO 23903 Business View, which is thereafter transformed into 

the corresponding ISO 10746 RM-ODP views, deploying the representational tools 

(view ontologies) and thereby following the good modeling practices (Figure 4). 

According to the ISO 23903 framework, concepts can only be mapped and transformed 

at the same level of specialization/generalization. For getting there, the components have 

to be specialized or generalized before. The process of re-engineering existing systems 

for integration and/or interoperability is shown in Figure 5. 

ISO 23903 also enables the harmonization and integration of existing architecture 

models and frameworks as well as reference architectures (RAs) such as IoT RA, 

Industry 4.0 RA, etc. Ongoing projects frequently ignore the presented principles, 

challenges and limitations by trying just to aggregate “related” information or data 

models or to perform term-based mappings. 

 

 
Figure 4. ISO DIS 23903 Mandatory Model and Framework [56]. 

 



 
Figure 5. Integration of standards and specifications using the Reference Architecture model [56]. 

 

Before becoming an international standard, the presented approach developed by the 

first author and his teams has been successfully deployed in several cross-domain ISO 

specifications, such as ISO 22600 Health Informatics - Privilege Management and 

Access Control [64], ISO 21298 Health Informatics - Functional and Structural Roles 

[65]. Its feasibility has been practically demonstrated for automatically harmonizing HL7 

v2.x and HL7 v3 specifications [66, 67] or for automatically designing inter-domain Web 

services to facilitate multi-disciplinary approaches to Type 2 Diabetes Care management 

[8, 9]. The approach also allows a comparative analysis and evaluation of ICT Enterprise 

Architectures [7]. 

9. Discussion 

The presented data model levels [49, 50] roughly comply with the phases of OMG’s 

Model Driven Architecture (MDA), defining the computation-independent modeling 

(CIM), platform-independent modeling (PIM) and platform-specific modeling (PSM). 

They are also comparable to the extended ISO/IEC 10746 Open Distributed Processing 

– Reference Model (RM-ODP) according to the ISO DIS 23903 Interoperability and 

Integration Reference Architecture model and framework introduced in the previous 

chapter. The Very High Level Data Model corresponds to the ISO DIS 23903 Business 

View, while the High Level Data Model corresponds to the RM-ODP Enterprise View, 

the Logical Data Model to the RM-ODP Information View and Computational View, 



and the Physical Data Model complies with the RM-ODP Engineering View and 

Technology View. The latter views represent implementation and deployment. 

Table 5 compares the different Data Model Levels [46], Modeling Dimensions [48], 

related Modeling Actors and Model Scopes with ISO 23903 as well as other standards 

and specifications, demonstrating how ISO 23903 combines and advances all those 

approaches.  

 

Table 5. Comparing Data Model Levels, Dimensions of Modeling, Data Model at Different Information 

Level and the ISO Interoperability and Integration Reference Architecture Model, applied to specification 

examples [19] 

Data 

Model 

Level 

[46] 

Dimen-

sion of 

Modeling 

[48] 

Data 

Models at 

Different 

Information 

Levels [47] 

Modeling 

Actors 

Model Scope ISO 23903 

Interop. & 

Integration 

RA 

Examples 

Very-

high-

level 

data 

model 

Know-

ledge 

space 

External Business 

domains 

stakeholders 

Scope, 

requirements 

and related basic 

concepts of 

business case 

Business 

View 

 

  

IS
O

 2
3

9
0

3
 I

n
te

ro
p

e
ra

b
il

it
y

 a
n
d

 I
n

te
g

ra
ti

o
n
 R

e
fe

re
n

ce
 A

rc
h

it
ec

tu
re

 

High-

level 

data 

model 

Know-

ledge 

Conceptual Business 

domains 

stakeholders 

Relevant 

information and 

representation & 

relationships of 

basic concepts 

Enterprise 

View 

DCM, 

CSO 

IS
O

 1
0

7
4

6
 O

D
P

-R
M

 

Logical 

data 

model 

Infor-

mation 

Logical Data 

modelers 

and analysts 

Layout & types 

of data and 

object 

relationships 

Infor-

mation 

View 

HL7 V3 

(CMETs), 

HL7 

CIMI, 

openEHR 

Arche-

types, 

FHIM 

Compu-

tational 

View 
HL7 

FHIR Physical 

data 

model 

Data Physical Data 

modelers 

and 

developers 

Implementation-

related and 

platform-

specific aspects 

Engineer-

ing View 

 

According to the basics of cognition theories and principles of knowledge 

representation and management, including appropriate representation tools (languages 

and grammars), KR and KM facilitate the representation of (parts of) reality to serve 

specific objectives and interests intended by the development teams. Available KR tools 

allow representing anything. Any representations are possible. However, a platform-

specific model (view) wrongly representing the corresponding platform-independent 

model (view), or a platform-independent model (view) not complying with the enterprise 

view, etc., are useless and even dangerous. Therefore, the correctness, completeness and 

consistency of models (components, functions and relationships) as well as their 

integration and interoperability can only be justified at the systems levels they represent. 

The same holds also for the representation of a viewpoint by the more 

specialized/constrained view in the development process. 

The presented system-theoretical, architecture-centered, ontology-based 

representation of business systems does not replace the other views and their models and 



specifications, but it facilitates their correct selection, constraining, completion and 

interrelation for systems integration and interoperability as demonstrated in Figure 5. 

That way, the correct deployment of existing work products such as HL7’s Application 

Programming Interfaces (APIs) or Fast Healthcare Interoperability Resources (FHIR) 

[64] is enabled. Practitioners emphasize the importance of the approach derived in this 

paper as well. HIMSS Chief Technology and Innovation Officer Steve Wretling stated 

for example: “Interoperability needs an architecture in addition to APIs” [69]. 

10. Conclusions 

All aspects or levels of knowledge representation and management from cognitive 

theories and modeling processes through notation up to processing, tooling and 

implementation undermine the need for a top down approach for any new system, new 

context or new use case at least in the first step. Only the business view allows the 

complete and consistent definition of concepts and constraints of components and 

relations. A solely data level focused development and implementation process cannot 

meet the challenges of highly dynamic and complex pHealth ecosystems. As models can 

be used to create new knowledge, aggregations in the sense of integration or 

interoperability can provide new insights at any viewpoint. However, the correctness of 

the outcome must be justified at reality. In other words, correct integration and 

interoperability cannot be guaranteed at data level or by just using terminologies, i.e. 

terms without the related concepts and relations. Standards defining platforms and 

frameworks must cover the entire continuum of knowledge representation and 

management presented in this paper. Just very few Standards Developing Organizations 

(SDOs) such as the Object Management Group (OMG) with its Model Driven 

Architecture (MDA) partially meet this challenge. Others like IEEE, ISO/TC215, 

CEN/TC251 or HL7 International have to extend their main focus from data models and 

implementable artifacts towards processes and related frameworks. With the recently 

approved ISO 23903, ISO/TC215 undertook an important step into that direction. 
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