Prior Authorization in Oncology Using HL7® FHIR®

Prior Authorization in Oncology: Addressing the Challenges

Prior authorization (PA) remains one area where automation and standardization lags other payer processes, such as claims submittal and eligibility. This greatly impacts oncology which requires PA for chemotherapy regimens as well as for radiation therapy, genomics testing and supportive meds. Oncologists and support staff experience stress from burdensome PA processes that vary across payers. PA commonly produces delays, causing anxiety for cancer patients who may abandon the recommended treatment.

CMS’ recent release of proposed interoperability rules for PA gives guidance on the FHIR-based standardization required in information exchange. Implementation of this electronic PA framework avoids proprietary, non-scalable approaches between health systems and payers.

Prior Authorization in Oncology CodeX Use Case

The goal of this use case is to produce a standard FHIR information exchange with a focus on electronic PA, including automated approvals. The foundation of the approach is the Da Vinci Coverage Requirements Discovery (CRD) and Document Template Rules (DTR) standards that originated with the CMS Document Requirement Lookup Service (DRLS) initiative, and the Da Vinci PA Support (PAS) standard. The Da Vinci FHIR Accelerator and CodeX work together to accomplish this use case, relying on the participation of stakeholders.

Health systems, payers, pathway vendors and other organizations will drive the development and implementation of this effort.

CodeX Communities + mCODE +FHIR

CodeX (Common Oncology Data Elements eXtensions) is a member-driven FHIR Accelerator, building communities to create interoperable data models and applications leading to step-change improvements in cancer patient care and research. CodeX projects center on use cases that address cancer care and research. CodeX Members are achieving interoperability by implementing the FHIR standard mCODE (minimal Common Oncology Data Elements), which defines key cancer characteristics in an interoperable framework.