

Security Working Group

Cascaded Authorization Service

Draft v0.9

Mohammad Jafari, Kathleen Connor

January 15, 2018

Cascaded Authorization Service v0.9 January 15, 2018

ii

Table of Contents

1	 Introduction ..1	
2	 Concept ...1	

3	 Actors ..2	
4	 Overview ...3	

5	 Assumptions and Preconditions ...4	
5.1	 Resource ...4	

5.2	 Provisioning ...4	
5.3	 Naming Conventions ...4	

5.4	 Policy Setup ...5	
6	 Detailed FLOW ..5	

6.1	 Client’s First Request to Resource Server without Access Token5	
6.1.1	 Determine Permissions ...5	

6.1.2	 Register Permissions with the Principal AS ...5	
6.1.3	 Referral Response to the Client ..5	

6.2	 Client’s First Request for Access Token from the Principal AS5	
6.2.1	 Verification ...5	

6.2.2	 Register Permissions with Secondary AS ...6	
6.2.3	 Referral Response to the Client ..6	

6.3	 Client’s Request to Get a Secondary AS Access Token ..6	
6.3.1	 Verification ...6	

6.3.2	 Issuing a Secondary AS Access Token and Response to the Client7	
6.4	 Client’s Second Request for Access Token from the Principal Authorization Server ..7	

6.4.1	 Verification ...7	
6.4.2	 Scope Reconciliation, Issuing an Access Token and Response to the Client7	

6.5	 Client’s Second Request to Resource Server with Access Token7	
7	 UMA 2.0 and Cascaded Authorization ..10	

7.1	 UMA 2.0 ..10	
7.1.1	 Protection API ..10	

7.1.2	 Federated UMA and Multiple Authorization Servers ...10	
7.2	 UMA 2.0 and Cascaded Authorization ..10	

8	 USE-Case Example: Patient Consent ...11	

January 15, 2018 Cascaded Authorization Service v0.9

iii

List of Figures
FIGURE	1.	HIGH-LEVEL	FLOW	OF	CASCADED	AUTHORIZATION	 4	
FIGURE	2.	DETAILED	SEQUENCE	DIAGRAM	OF	A	SUCCESSFUL	CASCADED	AUTHORIZATION	FLOW.	 9	
FIGURE	3.	OVERVIEW	OF	THE	FLOW	FOR	PATIENT	CONSENT	USING	CASCADED	AUTHORIZATION	 12	
FIGURE	4.	SEQUENCE	DIAGRAM	FOR	THE	PATIENT	CONSENT	USE-CASE.	 13	

January 15, 2018 Cascaded Authorization Service v0.9

1

1 INTRODUCTION
This document introduces the concept of Cascaded Authorization in and discusses the details of
the design and flows. Cascaded authorization enables systems using OAuth 2.0 and its User-
Managed Access (UMA) profile, to set up multiple Authorization Servers each dedicated to
handling one type of authorization policy. This is an extension of the plain OAuth 2.0 and UMA
in which a single Authorization Server makes the ultimate decision to grant or reject an access
request.
While our main focus and demo implementation of this concept has been healthcare-specific and
particularly focused on the case of enforcing overarching and patient consent privacy policies
using two separate authorization servers in exchange scenarios, this document discusses the
concepts and the flow in more abstract and broad terms without using the healthcare-specific
use-case nomenclature. This will provide the opportunity for others in the authorization
community, especially the community of the User-Managed Access (UMA) profile of OAuth 2.0
to find other use-cases that can benefit from this architecture.

2 CONCEPT

The idea of having an Authorization Service originates from the need to gather all authorization
responsibilities that were often scattered in different sub-systems into a single place so that
policies can be configured at a single central point. Central to most authorization architectures is,
thus, the idea of a single Policy Decision Point (PDP) which is in charge of processing and
understanding all authorization policies, and accordingly, responds to queries about whether an
access request is authorized.
As authorization systems get more complicated and data owners are given more control over the
policies governing access to their data, more often than not, a data element is subject to various
policies set by different authorities. So, the assumption of a single point of policy decision is
becoming less realistic and less scalable.
In healthcare exchange, for example, collected data is subject to overarching policies from
federal and state laws as well as specific organizational policies and patient’s own privacy
preferences.

Considering the policies set by the data owner/subject (such as patient consents) brings in a large
number of policies into the authorization system which introduces a whole set of new challenges.
Firstly, there are usually a large number of such policy makers and it can increasingly become a
burden to capture, maintain, process, and manage such a large number of policies and develop
the suitable user interfaces for enabling these users to author and configure their policies. This
motivates outsourcing this service to a third-party authorization service which takes care of all
such tasks and provides the answer to authorization queries —as far as those policies are
concerned. For example, a third-party Patient Consent Authorization service can handle all the
responsibilities to collect, maintain, update, and analyze patient consents, and simply responds to
the queries whether (and to what extent) a requesting party is authorized to access a patient’s
record.
Secondly, individual data owners’ policies, such as patient consents, may often include sensitive
information or clues that could be indicative of sensitive information. So, it is desirable from a
separation-of-duties viewpoint, to have separate decision points processing different policies and
not allow a single Authorization Server to access to all applicable policies.

Cascaded Authorization Service v0.9 January 15, 2018

2

The crux of the Cascaded Authorization proposal is to add the capability to consult more than
one Authorization Server in an UMA/OAuth architecture. In this architecture, multiple
Authorization Servers can exist, each in charge of processing and handling one group of policy
and making authorization decisions based on them.
Upon receiving an access request from a requesting party, a Principal Authorization Server
determines which one of the Authorization Servers need to express their decisions regarding that
request and sends the Authorization Request to them. The principal Authorization Server then
collects and combines all of these decisions and make the ultimate call about authorizing the
request.

3 ACTORS
In a typical OAuth/UMA flow, there are three actors:

- Resource Server (RS): a server which stores protected resources and is capable of
providing access to them.

- Client: the party which intends to access some resource in the care of the RS. We
sometimes refer to the client as Requester, Requesting Party, or Recipient.

- Authorization Server (AS): the server in charge of making authorization decisions. The
AS is capable of:

o evaluating authorization requests according to some authorization policies,
o determining whether and to what extent access can be allowed,
o issuing access tokens to requesters (called the Requesting Party Token (RPT) in

UMA), and
o responding to verification requests about issued tokens.

In Cascaded Authorization, there can be more than one authorization server: A Principal AS
which is the final adjudicator of an access request, and one or more Secondary Authorization
Servers each of which is in charge of handling a certain category of authorization policies:

- Principal AS: The principal AS is in immediate connection with the RS and its approval
—in the form of issuing a token— is required for every single access request received by
the RS. Depending on policies and configurations, this Principal AS may decide to
require further approvals from one or more Secondary Authorization Servers as a
precondition to issuing the final access token. The Principal AS will collect all such
decisions, adjudicate them using a decision-combining policy, and eventually decide
whether or not to issue an access token.

- Secondary AS: A secondary AS is an OAuth/UMA server in charge of handling a certain
type or group of policies in its care, for example, patient consents. The approval of a
Secondary AS denotes that access is authorized as far as that particular type of policies
are concerned. The Secondary AS communicates this decision by issuing an Access
Token. Whether or not the decision of a Secondary AS is necessary and whether or not its
decision will prevail depends on the decision of the Principal AS.

Based on its configured policies, the Principal AS decide whether to require a decision from one
or more Secondary Authorization Servers, and adjudicates them based on some combining

January 15, 2018 Cascaded Authorization Service v0.9

3

policy, such as simple AND/OR, majority vote, or more sophisticated combining logic for
combining the scopes granted by each Secondary AS1.
This architecture provides a powerful distributed mechanism for separating the authorization
decision-making for different classes of policy amongst a number of Secondary Authorization
Servers and removes the need to have a single omniscient authorization server aware of all the
applicable policies. In use-cases where there is a large number of policies to be analyzed, such as
the case of patient consent, this architecture enables distribution of decisions making and
separation of duties.
As an example, consider the healthcare exchange use-case where various types policies ranging
from patient consent to jurisdictional policies must be followed. In this case, the Principal AS is
configured to analyze and enforce the overarching and organizational policies while handling of
the patient consent is delegated to Secondary Authorization Servers. The Principal AS in this
case decides, according to the overarching policies and other configurations, which requests
depend on the patient’s consent, in which case it refers the client to the Secondary AS, i.e. a
Patient Consent AS, to acquire authorization. For example, exchange of information between the
VA and DoD does not require the patient consent. In this case, the primary AS, simply issues the
Access Token for the requester. When a third-party organization, such a hospital requests access,
however, the principal AS determines, based on the overarching policies, that this exchange
requires the patient consent, so it redirects the requester to the Patient Consent AS to acquire an
Access Token from that AS first.
In this document, we only discuss the case where there is a single Secondary AS; extending the
design to involve more than one Secondary AS is straightforward.

4 OVERVIEW
Figure 1 depicts a high-level overview of the flow.

1 To clarify a technical detail, we are aware that if any of the Secondary Authorization Servers refuse to issue an
RPT altogether (i.e. an HTTP 403 response), then the flow halts and this means evaluation of a disjunctive (OR)
combining cannot move forward. However, this can be fixed by having the Secondary AS issue an RPT with an
empty scope/permission set to indicate the intention to deny an access request.

Cascaded Authorization Service v0.9 January 15, 2018

4

Figure 1. High-level flow of cascaded authorization

5 ASSUMPTIONS AND PRECONDITIONS
There are a number of assumptions and preconditions in this flow.

5.1 RESOURCE
We assume that the resources are already stored at the RS and the Client knows about this and
can construct a suitable query to request the resources it needs from the RS.

5.2 PROVISIONING
We assume that the Client knows where the RS resides, and already has the credentials required
to speak to all of the Authorization Servers. This may require prior handshaking and
provisioning to introduce the client as a legitimate communicator with each of the Authorization
Servers. In a similar vein, the RS needs to have been introduced to the Principal AS, and
similarly, the Principal AS needs to be introduced to all the Secondary Authorization Servers.

5.3 NAMING CONVENTIONS
The RS and all the Authorization Servers need to establish a mechanism to be able to determine
which policies at which server applies to which resource. This may require a common naming
convention to refer to resource sets. For example, in the case of healthcare exchange, the RS and

January 15, 2018 Cascaded Authorization Service v0.9

5

the Secondary (Consent) AS need to have a reliable mechanism to communicate a patient ID in
order to determine which patient’s consent applies to a given request.

5.4 POLICY SETUP
We also assume that policies are already set up and maintained by the respective administrators,
or other authorized policymakers at each of the Authorization Servers.

6 DETAILED FLOW
Figure 1 depicts the detailed sequence diagram of a successful cascaded authorization flow.
Details are discussed below.

6.1 CLIENT’S FIRST REQUEST TO RESOURCE SERVER WITHOUT
ACCESS TOKEN

The first time that client contacts the RS, the request does not include an Access Token. Upon
receiving this request, the RS takes the following steps.
6.1.1 DETERMINE PERMISSIONS
The RS examines the request and determines what Permissions (resource/scopes) are required to
fulfill this request. This step requires that the RS determine all the resources that would be in the
result of the request, loop through all of them, and map them to UMA permissions.

6.1.2 REGISTER PERMISSIONS WITH THE PRINCIPAL AS
The RS contacts the Principal AS at its Permission Registration Endpoint and registers the
determined Permissions. If this is successful, the Principal AS returns a string, which we call the
Principal AS Ticket, in the response.

6.1.3 REFERRAL RESPONSE TO THE CLIENT
The RS sends the client an Unauthorized (HTTP 401) response with the respective headers
pointing to the Principal AS from which the client must obtain the Principal AS Access Token.
This response also includes the Ticket.

6.2 CLIENT’S FIRST REQUEST FOR ACCESS TOKEN FROM THE
PRINCIPAL AS

The client, then, requests an Access Token from the Principal AS at its Authorization Endpoint.
This request includes the Principal AS Ticket received in the previous step from the RS and a set
of Claims Tokens (signed by trusted issuers). Note that the UMA protocol allows for an array of
such token to be provided, so it is possible to include several Claims Tokens, for example, one
vouching for the identity of the Client itself, and another one vouching for the identity of the
end-user behind the Client.
After receiving this request, the Principal AS, takes the following steps.

6.2.1 VERIFICATION
The Principal AS verifies the presented Principal AS Ticket to ensure it is valid and corresponds
to an earlier permission registration.

Cascaded Authorization Service v0.9 January 15, 2018

6

It also verifies the presented Claims Tokens to ensure they are valid and signed by a trusted
issuer.
Finally, it examines its policies to determine whether the requested access is authorized. The
result could be:

- A deny, in which case the Principal AS sends a Forbidden response (HTTP 403) to the
client.

- A permit, in which case the Principal AS issues an Access Token corresponding to the
registered Permissions and sends it back to the client.

- An obligation to require the approval of the Secondary AS which leads to a referral to the
Secondary AS.

6.2.2 REGISTER PERMISSIONS WITH SECONDARY AS
In the latter case, when the approval of the Secondary AS is required per policies, the Principal
AS contacts the Secondary AS at its Permission Registration Endpoint and registers the
Permissions requested by the Client. In response, the Secondary AS sends back a Secondary AS
Ticket as a receipt.
Note that, in general, the Principal AS has the power to modify the registered permission based
on its polices and configuration. For example, it may register a subset of the initial requested
permissions based on some policies, or translate them to the vocabulary understood by the
Secondary AS based on the interoperability configurations.
6.2.3 REFERRAL RESPONSE TO THE CLIENT

The Principal AS sends an Unauthorized response (HTTP 401) to the client, including a pointer
to the Secondary AS and the Secondary AS Ticket.

6.3 CLIENT’S REQUEST TO GET A SECONDARY AS ACCESS TOKEN
The client, then, sends a request for a Secondary AS Access Token to the Secondary AS at its
Authorization Endpoint. This request includes the Secondary AS Ticket and a set of Claims
Token signed by a trusted issuers. Note that the UMA protocol allows for an array of such token
to be provided, so it is possible to include several Claims Tokens, for example, one vouching for
the identity of the Client itself, and another one vouching for the identity of the end-user behind
the Client.

The Secondary AS takes the following steps to process this request.
6.3.1 VERIFICATION

The Secondary AS verifies the presented Secondary AS Ticket to ensure it is valid and
corresponds to an earlier permission registration.

It also verifies the Claims Tokens to ensure they are valid and signed by trusted issuers.
Finally, it searches to find the policies pertaining to the requested Permissions and examines
them to determine whether this access is authorized. If the result is a deny, the Secondary AS
sends a Forbidden response (HTTP 403) to the Client. Otherwise, it will issue a Secondary AS
Access Token, as discussed below.

January 15, 2018 Cascaded Authorization Service v0.9

7

6.3.2 ISSUING A SECONDARY AS ACCESS TOKEN AND RESPONSE TO THE
CLIENT

In the case of a Permit response, the Secondary AS determines the granted Scopes to the Client
and issues an Access Token associated with those Scopes. Note that, based on the Secondary AS
policies, this can result in granting all or a subset of the Scopes initially requested in the
Permission Registration step.

6.4 CLIENT’S SECOND REQUEST FOR ACCESS TOKEN FROM THE
PRINCIPAL AUTHORIZATION SERVER

After receiving the Secondary AS Access Token, the Client requests an Access Token from the
Principal AS again, this time, including the Consent Access Token, denoting that access was
approved by the Consent AS. Note that the Consent Access Token in this case must be included
in the body of the HTTP request, since the Authorization Header already bears a different bearer
token for authorizing access to the endpoint. The most suitable place to include the Secondary
AS Access Token is in the Claims Token array since the approval of the Secondary AS can be
considered as a trusted claim.
The Principal AS, subsequently, takes the following steps to process this request.

6.4.1 VERIFICATION
The Principal AS verifies the presented Principal AS Ticket again to ensure it is valid and
corresponds to an earlier permission registration.
It also verifies the other Claims Tokens again to ensure they are valid and signed by a trusted
issuer.
The Principal AS also invokes the Token Introspection flow with the Secondary AS to ensure
that the presented Secondary AS Access Token is valid, and also to receive the granted
Permissions associated with it.

6.4.2 SCOPE RECONCILIATION, ISSUING AN ACCESS TOKEN AND RESPONSE TO
THE CLIENT

If all of the above steps are successful, the Principal AS will determine the final granted Scopes,
issue an Access Token, and send it back to the Client.

A crucial step here is a Scope Reconciliation step, in which the Principal AS examine the granted
scopes by the Secondary AS and verifies them with its own policies and granted scopes. Thus,
the Principal AS has the power to deny some of those granted scopes, per overarching policies,
or translate them from the vocabulary of the Secondary AS, to a different vocabulary understood
by the RS, per configurations.

6.5 CLIENT’S SECOND REQUEST TO RESOURCE SERVER WITH
ACCESS TOKEN

After receiving the Access Token from the Principal AS, the Client repeats its request to the RS,
this time presenting the Access Token. The RS, then, runs a Token Introspection flow with the
Principal AS to ensure that the Access Token is valid, and to determine the granted
Permissions/Scopes associated with it. Once these Permissions/Scopes are determined, the RS
invokes the Security Labeling Service and Privacy Preserving Service on the response to ensure

Cascaded Authorization Service v0.9 January 15, 2018

8

that only the information matching the granted scopes are included. Finally, the RS sends the
labeled (and potentially modified) copy of the data to the Client.

January 15, 2018 Cascaded Authorization Service v0.9

9

Figure 2. Detailed sequence diagram of a successful cascaded authorization flow.

Cascaded Authorization Service v0.9 January 15, 2018

10

7 UMA 2.0 AND CASCADED AUTHORIZATION
Since the results of this project was presented, there has been an update planned for the UMA
standard. In this section, we discuss the major changes to the standard and how they affect the
Cascaded Authorization proposal.

7.1 UMA 2.0
In this section, we briefly discuss the changes in the upcoming UMA 2.0.
7.1.1 PROTECTION API

The proposed UMA 2.0 moves the original Protection API out of the main standard thereby
leaving the communication between the Resource Server and the UMA servers up to the
discretion of the respective developers. However, there is a new profile called Federated UMA,
which describes and standardizes the former Protection API. Thus, developers who would like to
follow a standard for the communication between the RA and AS, can follow the Federated
UMA profile.

One of the major improvements to the Protection API in this profile is that unlike the older
version of UMA, at the time of the Permission Registration, the RS now has the option to
register more than one Permissions. This is important because depending on the Client’s request,
the set of resources requested by the client may belong to more than one registered resource set,
especially when the Client sends a request in the form of a query asking for several resources.
7.1.2 FEDERATED UMA AND MULTIPLE AUTHORIZATION SERVERS

The new Federated UMA profile states that the RS has the option to protect the resources in its
custody using different Authorization Servers. In other words, the Resource Owner, or the RS
itself, can designate one AS (e.g. AS1) to protecting resources of type A, while designating a
different AS (e.g. AS2) for protecting resource of type B. Therefore, when receiving a request by
the Client that calls for sending resources of type A, the RS will refer the Client to AS1 and when
the request involves resource of type B, the RS will refer the Client to AS2. The current UMA
2.0 draft does not specify the details of such flow and deems it out of the scope of the standard.

7.2 UMA 2.0 AND CASCADED AUTHORIZATION
While the Federated UMA profile touches on the subject of multiple Authorization Servers, it
does not discuss the details of the flow for such a use-case, and as mentioned above, considers it
out of the scope of the profile.

Moreover, while the profile recognizes the use-case in which different Authorization Servers
must be consulted for authorizing access to different groups of resources, it does not consider to
the case where multiple Authorization Servers must be consulted in responding to a single
request and it still implies that in processing each request, the RS will end up selecting one single
AS and proceed the UMA flow with that AS.
This is an important use-case and the assumption that at the end of the day, each request will
have to be processed with a single AS seems to be restrictive and failing to cover some use-cases
such as FHIR resources.

For example, consider the case above where the Resource Owner has designated AS1 for
resources of type A (e.g. RA) while resources of type B (e.g. RB) are assigned to another AS, AS2.

January 15, 2018 Cascaded Authorization Service v0.9

11

Now, if a Client sends a request in the form of a query, the response to which includes a bundle
of resources of both type A and B (e.g. both RA and RB), then the RS has to refer the Client to
acquire RPTs from both RS1 and RS2. While, the current Federated UMA profile does not cover
how the flow will look like in this case, the Cascaded Authorization proposal describes this in
detail.

Also note that in the current Federated UMA profile, all the following logics are left to the RS:
1. Determining what Authorization Server(s) must be consulted in response to a request,

2. Following the Permission Registration flow with each of them,
3. Following the Token Introspection flow with each of them, and

4. Combining the decisions and granted scopes from all of the consulted Authorization
Servers and consolidating them into an ultimate decision.

This means that the RS, in such cases, will have to have a rather bloated authorization module
which is involved in making some policy decisions (Step 1 and 4). This is somehow contrary to
the goal of offloading the authorization policy processing from the RS which seems to be one of
the major goals of UMA.

The Cascaded Authorization proposal, on the other hand, factors out this logic and moves it onto
the Principal AS, therefore, leaving the RS almost entirely clear of authorization decisions.

8 USE-CASE EXAMPLE: PATIENT CONSENT
This section discusses an example of using Cascaded Authorization in the use-case of releasing
information authorized by a patient under the jurisdictional policies of Patient Right of Access.
The main scenario of this use-case is that the patient grants a client (or a group thereof), such as a
Mobile Application, the right to access their health information residing at the servers of one or
more custodian organizations. Any client covered by this grant, then, should be able to get a
copy of the information belonging to that patient under the constraints set by the patient.

In this use-case we will assume that the Principal AS will enforce the overarching policies,
including the jurisdictional policy pertaining to Patient Right of Access. Patient Consents
Directives, including the request for granting access under Right of Access provisions, will be
filed and processed by a separate AS, which we call the Consent AS.

An overview of this flow is provided in Figure 3. Figure 4 shows the sequence diagram in line
with the general flow of the Cascaded Authorization.

Cascaded Authorization Service v0.9 January 15, 2018

12

Figure 3. Overview of the Flow for Patient Consent Using Cascaded Authorization

C
u
s
to
d
ia
n
	O
rg

Resource	

server

FHIR	API

Check	

Overarching	

Policies

5

OAuth	

Interceptor	

PPS/SLS

CDMS

FHIR	API

Patient

Overarching	

Policies

O
A
u
th
	e
n
a
b
le
d
	F
H
IR
	c
li
e
n
t

Submit	Consent

Request	for	Data1

Redirect	to	CO	AS3

Patient	Consent

Authz Server

PC	AS

Custodian	Org	

Authz Server

CO	AS

Request	for	Token4

Redirect	to	PC	AS7

Request	for	Token8

PC	Token10

Label/Transform	Data16

Verify,

Introspect

12

Permission	

Registration

2

Check	

Consent

9

Request	for	Token		+	PC	Token11

CO	Token13

Request	for	Data	+	

CO	Token

14

Labeled/Transformed	

Data

17

Permission	

Registration

6

Verify,

Introspect

15

January 15, 2018 Cascaded Authorization Service v0.9

13

Figure 4. Sequence Diagram for the Patient Consent Use-Case.

