HL7 mFHA Standard

Mobile Framework for Healthcare Adoption of Short-Message Technologies

Project of the HL7 Mobile Health Workgroup
HL7 mFHAST Goal

- To provide standards for communicating health services through short message technologies (SMTs) (e.g. SMS, Instant Message, Twitter, etc.)
- To increase opportunities for consumer / patient engagement and timely communication
- To improve communication and response time among providers of health services
HL7 mFHASt Importance

- Brevity of message for bandwidth sensitive settings (e.g. LMIC, Rural Health)
- Brevity of message for increasing human processing and response
- Increased opportunities for low infrastructure settings
mFHAST Status

- Evolved out of mHealth Low & Middle Income Countries (LMIC) sub-workgroup activities
- HL7 project/product (normative standard) in development
- Project approved by HL7 SD April 2015
- Approved by TSC September 2015
- Comment-only ballot submitted Dec 2016
- Meeting now Thursdays @ 3pm EST in concert with the CMHAAFF workgroup meetings.
mFHASt Short-message Concept

- Short messages within the mFHASt standard are meant to be
 - Brief
 - Low Payload
 - Easily Processed by Humans at its endpoint
 - Orientation is for fast, meaningful communication between people and care providers using garden variety technologies with no assumption of having sophisticated apps or services
Creativity loves constraints and simplicity is at our core. Tweets are limited to 140 characters so they can be consumed easily anywhere, even via mobile text messages.

There’s no magical length for a Tweet, but a recent report by Buddy Media revealed that Tweets shorter than 100 characters get a 17% higher engagement rate.
Short-message Technology Basics

- “Short-Message Technology” encompasses the realm of technologies related to SMS, text messages, instant messages (e.g., iMessage, FaceBook Message, Twitter, WhatsApp, Google Chat, Unstructured Supplementary Service Data (USSD) messages etc.)
- Emphasizing brief messages of approximately 160+/- characters
- Low-cost, low infrastructure, low learning-curve
OTT vs SMS

- **OTT** - over-the-top messaging is third parties providing instant messaging services as an alternative to text messaging services provided by a mobile network operator, particularly WhatsApp, which is narrowly focused to replace text messaging on Internet connected smartphones.

- **Traditional SMS** – Cellular network based data transmission limited to approximately 145-160 characters.
mFHAST Business Cases

- Public Broadcast
- Private Broadcast
- B2P/P2B
- P2P
Public Broadcast

- Sent to all subscribers of a specific short message service (e.g., Amber Alert)
- No PII, PHI
Private Broadcast

- More personalized messages according to a particular cohort (e.g. CDC Text4Baby)
- Assumed that no PII/PHI is transmitted, but subscription to the cohort increases exposure
B2P/P2B Messaging

- Directed messaging between a person and an organization (e.g., appointment reminders, field survey)

SMS + Cue Card Interface

General Strengths
- Can be used with any phone
- Ongoing cost is low (SMS)
- Many workers familiar with SMS

General Weaknesses
- Requires basic literacy skills
- Changing survey requires new cue card
- Hard to enter in free-form notes
- No confirmed receipt of data delivery
- Worker can forget or lose cue card
- Quite easy to fake visits (copy old SMS)

Our Results: Accuracy & Efficiency
- We measured 4.5 errors per 100 entries
- The average interaction was 97 seconds
P2P Messaging

- P2P SMT messages represent unique instances in which a personal exchange occurs between two individuals to discuss healthcare.
mFHAST Evidence-Base

HL7 MFHAST RESEARCH & DEVELOPMENT ENVIRONMENTAL SCAN

How to Prevent a Heart Attack: Text Patients on Healthy Habits

From the Heart Failure Hospital summary: "Recent studies have found evidence suggesting that text messages could reduce one's risk of a second heart attack. A six-month clinical trial in Australia found that patients receiving text messages were more likely to maintain lower blood pressure, lower blood lipid and lower cholesterol levels than a control group, when the patients received text messages asking how they were doing and providing suggestions about their health routines. Patients receiving the texts also were more likely to be active and stop smoking than the patients in the control group, who didn't receive such texts.

Wearable Sensor/Device (Fitbit One) and SMS Text Messaging Prompts to Increase Physical Activity in Overweight and Obese Adults: A Randomized Controlled Trial
A report summarized in HIMSS TIGER news April 17, 2015

From the summary: "Mobile devices are increasingly prevalent in life and have become one of the study subjects in clinical research. Wearable sensor devices are widely used for these studies. A recent publication in the International Journal of Information Health tested the utility of a wearable device, in comparison with SMS messaging in promoting overeating and obese adults to increase their physical activity (5). Exercise Seven adults exercising the study. The results suggested that a Fitbit and SMS-mixed approach improves a small increase in moderate to vigorous intensity physical activity at a baseline intensity and low motor activity is insufficient to increase physical activity in the control group."
HL7 mFHAST Workgroup Preliminary Findings: Domain

<table>
<thead>
<tr>
<th>% of Total (n=75)</th>
<th>Healthcare Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>24%</td>
<td>Public Health</td>
</tr>
<tr>
<td>12%</td>
<td>Research & Education</td>
</tr>
<tr>
<td>10%</td>
<td>Child & Maternal Health</td>
</tr>
<tr>
<td>9%</td>
<td>Mental Health</td>
</tr>
<tr>
<td>9%</td>
<td>Patient Engagement</td>
</tr>
<tr>
<td>8%</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>5%</td>
<td>Immunizations</td>
</tr>
<tr>
<td>4%</td>
<td>Diabetes</td>
</tr>
<tr>
<td>4%</td>
<td>Medication</td>
</tr>
<tr>
<td>3%</td>
<td>Substance Abuse</td>
</tr>
</tbody>
</table>
mFHAST Comment-Only Ballot

- Ballot submitted for comment-only review 12/5/2016
- Ballot status – Approved (13 lucky votes)
- Total of 7 comments
mFHAST Message Requirements - Context

mFHAST Message Context

- SHALL either mobile human originate or mobile human terminate.
- SHOULD constrain textual message length to 140 to 160 characters.
- SHOULD constrain message package size to achieve average latency levels depending on available network bandwidth (e.g., 3G vs 4G).
- SHOULD utilize secure mobile device access and storage practices where applicable to the implementation.
mFHAST Message Requirements - Content

- **mFHAST Message Content**

 - SHALL have a unique id identifying the sender of the message.
 - SHALL include an identifier type, and an id that is unique within that type.
 - SHALL have a unique message identifier.
 - SHALL include the date and time the message was sent.
 - SHALL have one or more recipient identifier(s).
 - SHALL designate message criticality.
 - SHALL be composed of a documented structure.
 - SHALL have a concatenation ID for message chaining.
 - SHOULD have a designation as to the activity type (e.g. domain such as immunization) message.
 - SHOULD have a specification for multiplicity (e.g. 1:1 or 1:N) (broadcast, duplex, single-channel)
mFHAST Message Requirements - Transport

mFHAST Message Transport

- SHALL provide system acknowledgement of successful receipt
- SHALL [IF] utilize secure transport channels where applicable to the implementation.
- SHOULD have the ability to address a large number of endpoints.
- SHOULD utilize multiple paths between the sources and destination in order to improve the probability of successfully transmitting a message.
mFHAST Implementation Use Case
Healthcare Short-Message Technology Promotion & Dissemination
mFHAST Project Timeline

- Q4 2016: Comment Only Ballot submitted!
- Q1 2017: Ballot reconciliation
- 2017 - 2022: Project on hold
- Q2 2022: Reconciliation package submitted!
Next Steps

Work on updating white paper and explore publication opportunities

Engendering workgroup development interest

Looking for potential pilots
Project and contact information

- Project Evidence Base: http://mfhast.healtheservice.com/

- Project Contacts:
 - Nathan Botts: nathanbotts@westat.com
 - Gora Datta: gora@cal2cal.com