Machine Learning in Healthcare

Ioana Singurreanu,
Chief Innovation Officer, Book Zurman
HL7 Conformance co-chair
Definitions are necessary but not sufficient

• Sometimes “AI” is used to describe things that are not AI:
 • Anything “new” and “cool” to do with a computers system or product
 • Visualization and other “wow” things
 • Business logic programmed explicitly is not AI

• Literally, the computer appears to be intelligent (the Turing test)
 • “thinking”, “reasoning”, the user can’t tell in 5 minutes whether it’s a human or not

• Humans are necessary to train, validate, apply trusted AI models

• AI increases the collective intelligence of the enterprise
 • Computer + human/user working together more effectively than before…
 • “Learning EHR”…that can learn from best-practice, PubMed, patient records
AI and us

AI does not replace humans; it augments human intelligence
May eliminate some repetitive tasks but it does not replace high-level decision maker from clinicians or direct care, reduces burden

The Learned Intermediary Doctrine (LOD)
Due to the risks associated with inaccurate prediction we use the same legal framework associate with medication safety
AI in Healthcare means...

• Clinicians and computers working together to achieve better outcomes for patients
 • Computer tools that are able to auto-complete
 • Word processor, IDEs, smart phones
 • Assistants suggest a solution
 • Chatbots, clinical decision support, AI voice assistance, MedKnowts
 • Peers
 • Complete a task and then refer to a human for valuation or to complete the process
 • Manager
 • Break a workflow up into tasks that can be completed or validated by humans

• Is a problem suitable for an AI model?
 • Watson tried to do too much
Strategic advantage of AI

1. Cost leadership (being the low-cost producer)
 • Improve operations

2. Differentiation (being unique on dimensions that customers value, such as quality)
 • Better products

3. Focus (tailoring products to a narrow segment of customers)
 • Address niche needs

 • AI may require a new strategy for the enterprise

• Robotic Process Automation
 • Robotic phlebotomist
 • Laboratory automation
 • Workflow must be well defined

• Machine Learning (Supervised and Deep)
 • Algorithm is the result of training rather than programming
 • Pathology detecting diseased tissue using deep learning
 • Diagnostic imaging detection of specific problems (e.g. dense fibrous tissue) in a consistent way

• Natural Language Processing (NLP)
 • Extracting findings from text
 • Analyzing medical literature
AI ML suitability question re: healthcare

• 1. Are there patterns in the data such that you can devise specific **features** and **labels** to train a machine and make predictions?
 - Terse “medical” narrative
 - Structured, standard data
 - What to do about

• 2. Is there access to sufficient amounts of training data?
 - Since MU2 we have developed standards for exporting info (e.g. C-CDA, V2)
 - We need examples of data sets that meet specific

• 3. Do you have the necessary information and resources to accurately annotate and label your data?
 - Interoperable data is the most likely to be “sufficient” for annotation

• 4. Is your evaluation setup reflective of the real-life use case?
 - Contrived/manually-generated content or lack examples of “ideal”
 - For example, existing “mappings” may be used to train the software to create proposed/future
 - Recording symptoms in real time, at home may improve the way patients formulate and describe” chief complaints”

• 5. Are there any potential biases in the data?
 - “Representative” vs. “fair” representation
Natural Language Processing (NLP)

• Not “speech-to-text” but meaning

• Failure if you try to do too much
 • $60 million attempt to look for cancer treatment in literature based on medical records and pathology reports using IBM Watson
 • Complex medical content with nuanced meaning that AI may be able to extract
 • Growing body of literature and research (PubMed from NLM)
 • Genetically-based conditions

• Annotated data
 • Annotated reports needed to train the ML; subsequent iteration of the algorithms applied and the resulting annotated
 • Retraining and refining the algorithm follows, iteratively, the model is refined
Interpretability and trust are a must

- **Interpretability**
 - Self-describing
 - All stakeholders must understand how a prediction was made, what information was considered
 - Hearing loss doesn’t cause an amputation, but military service may explain both

- **Consistent with medical science/best practices**

- **Trust**
 - Evaluated on the basis of an algorithm making accurate predictions for the patient being treated
Challenges in healthcare

• We need data to train AI models
 • Annotation/labeling
 • Features and patterns are used to create the model

• We need interpretability
 • Deep Learning is too complex to be self-describing, “black box” to clinicians

• We need to involve experts in data curation and preparation
 • Otherwise, we get erroneous predictions
 • Using payment data to make clinical predictions/risk-factors
 • Google’s first attempt at a personal medical record
Opportunities for HL7

• Annotated data using standard terminology
 • To enable data extraction and analysis
 • Features of the data used for training

• Patterns based on standard structures
 • Structured data and rich narrative (CDA Level 1 - 3)
 • Computable data pattern used by ML

• Workflows standardization

• Guidance regarding the need for interpretability, consistency, and trust